
REALLY Advanced School in High Performance and Grid Computing
ICTP, Trieste, 11-22 April 2011

11 Apr 2011

11 Apr 2011

  Real processors have registers, cache,
parallelism - they are complicated!

  Why is this your problem?
  In theory, compilers understand all of this and

can optimize your code
  Generally optimizing algorithms across all

computational architectures is an impossible
task, hand optimization will always be needed.

  We need to learn how…
  to measure performance of codes on modern

architectures
  to tune performance of the codes by hand (32/64

bit commodity processors)

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  When you are charged with optimizing an app
  Don't optimize the whole code

  Profile the code, find the bottlenecks
  They may not always be where you thought they were

  Break the problem down
  Try to run the shortest possible test you can to get

meaningful results
  Isolate serial kernels

  Keep a working version of the code
  Getting the wrong answer faster is not the goal.

  Optimize on the target architecture
  Optimizations for one architecture will not necessarily

translate

  The compiler is your friend!
  If you find yourself coding in machine language, you are

doing too much

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  The peak performance of a chip
  The number of theoretical floating point operations

per second
  Example: 2.4 Ghz Opteron can theoretically do 2

floating point operations per cycle, for a peak
performance of 4.8 Gflops

  Real performance
  Algorithm dependent, the actually number of

floating point operations per second
  Generally, most programs get about 10% or lower of

peak performance
  40% of peak, and you can go on holiday

  Parallel performance
  The scaling of an algorithm relative to its speed on

one CPU (core)
REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Monitoring System
  Observe both overall system performance and

single-program execution characteristics
  Look to see if the system is doing well and what

percentage of the resources your program is
using.

  Pro: easy
  Con: not very detailed

  Profiling and Timing the code
  Timing a whole programs (/usr/bin/time)
  Timing portions of the program (code

modification)
  Profiling

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  uptime - information about system
usage and user load

  ps - lets you see a “ snapshot” of the
process table

  top - process table dynamic display
  free - memory usage
  vmstat - memory usage monitor

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Virtual or swap memory
  This memory is actually space on the hard

drive
  The operating system reserves a space on

the hard drive for “ swap space”
  Time to access virtual memory VERY

large
  This time is attributed to the system, not

to your program, and you can observe it
e.g. as a difference in wall clock time
and CPU time

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

  man time

  user time: CPU time dedicated to your program
  sys time: time used by your program to execute

system calls
  real time: total time - walltime

11 Apr 2011

  Most programming languages provide
a means to access the systems own
timing functions

  C function: clock
 clock_t c0, c1;
 c0 = clock();
 section of the code…
 c1= clock();
 cputime = (c1 - c0)/(CLOCKS_PER_SEC);

  Fortran subroutine: cpu_time
 call cpu_time(t0)
 section of the code…
 call cpu_time(t1)
 cputime = t1 – t0

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Good application writers will take full
advantage of these to give users insight
into code performance

  Therefore, when writing an application,
you should consider timing of critical
parts of the program and printing timing
info as a part of its output

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Profiling is an approach to performance
analysis in which the amount of time
spent in sections of code is measured
(using either a sampling technique or
on entry/exit of a code block) and
presented as a histogram

  Allows a developer to target key time
consuming portions of codes

  Profiling can be done at varied levels of
granularity
  Function/subroutine, code block, loop and

source code line
REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Profiling: investigation of program
behavior using run- time information

  Profiler: conceptual module that
collects/analyzes run- time data

  Profile: a set of frequencies
associated with run-time events

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Most modern processors have one or more
registers dedicated to count low level
hardware information
  e.g. floating point operations, L1 cache misses, etc.

  This information is really useful to understand
at a very fine grain of detail what a program is
doing on the architecture

  PAPI (Performance API)
  The API provides function handles for setting and

accessing these counters
  http://icl.cs.utk.edu/papi/

REALLY Advanced School in

igh Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Hybrid (HW-assisted)
  Hardware Performance Monitors (HPMs)2.
  Dedicated HW collectors that deliver data

to SW module
  Fixed, low-overhead

  Software – Pure software
implementations
  Portable, flexible, high-overhead

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Simple gcc compiler flags can be used to get
profiling information
  Great place to start

  GNU:
  -p Generate extra code to write profile information

suitable for analysis program prof
  -pg Generate extra code to write profile information

suitable for analysis by program gprof.

  Procedure
  gcc -pg prog.c -o prog
  ./prog
  gprof prog gmon.out

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  TAU is a portable profiling and tracing
toolkit for performance analysis of
parallel programs
  http://www.cs.uoregon.edu/research/tau/

home.php
  Intel VTune

  http://en.wikipedia.org/wiki/VTune

  TotalView
  http://en.wikipedia.org/wiki/TotalView

  Profiling and optimization tuning tools
intermingle

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Profiling of the code
  Identification of bottlenecks
  Optimizing of one loop/function at a

time
  Starting with the most time consuming

fnctions (that is why we profile)
  Then the second and the third one

  Parallelizing of the program
  Then we can work on improving the

parallel performance (communication,
load balancing, etc..)

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Improve memory performance (taking
advantage of locality)
  Better memory access patterns
  Optimal usage of cache lines
  Re-use of cached data

  Improve CPU performance
  Reduce flop count
  Better instruction scheduling
  Use optimal instruction set

  Use of highly optimized numerical
libraries

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Pipelining allows for a smooth progression of instructions
and data to flow through the processor

  Any optimization that facilitate pipelining will speed the
serial performance of your code

  As chips support more SSE like character, filling the
pipeline is more difficult.

  Stalling the pipeline slows codes down
  Out of cache reads and writes; Conditional statements

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Effective use of the memory hierarchy can
facilitate good pipelining

  Temporal locality:
  Recently referenced items (instr or data) are likely

to be referenced again in the near future
  iterative loops, subroutines, local variables
  working set concept

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Spatial locality:
  programs access data which is near to

each other
  operations on tables/arrays
  cache line size is determined by spatial

locality
  Sequential locality:

  processor executes instructions in
program order

  branches/in-sequence ratio is typically 1 to
5

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  CPU cache is generally set up as a series of
lines that can pull in a specified amount of
data a given time.

  Accessing cache is infinitely faster than the
main memory

  Get as much data in at a time
  Use that data to its fullest

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Strides - contiguous blocks of memory
  Accessing memory in stride greatly

enhances the performance
  Array indexing

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Basic idea: change the order of data
independent nested loops.
  Advantages:

  Better memory access patterns (leading to
improved cache and memory usage)

  Elimination of data dependencies (to increase
opportunity for CPU optimization and
parallelization

  Disadvantage:
  May make a short loop innermost

  Usually, compilers cannot do this

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Fortran:

  C: precisely the opposite (raw-wise)

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

Loop order Execution time (Intel, 2.4 GHz)
i, j, k 8.77
i, k, j 7.61
j, i, k 2.00
j, k, i 0.57
k, i, j 0.90
k, j, i 0.44

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Computation is cheap, while branching
is very expensive

  Loops, conditionals, etc. cause
branching instructions to be performed:

 for(i = 0; i < N; i++) {
 do something useful(i);
 }

  Each time for statement is hit, a
branching instruction is called

  Therefore, (partially or fully) unrolling a
loop may be (highly) beneficial

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

  Compilers can do unrolling, but may make
them where it is not sensible

  This is not helpful when the work inside the
loop is not mostly number crunching

  GNU: -funrollloops, -funrollallloops
  PGI: -Munroll, -Munroll=n:M
  Intel: -unroll, -unrollM

11 Apr 2011

  Blocking for cache is
  An optimization that applies for datasets

that do not fit entirely into cache
  A way to increase spatial locality of

reference i.e. exploit full cache lines
  A way to increase temporal locality of

reference i.e. improves data reuse
  Example:

transposing
a matrix

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Block data
size = bsize
  mb = m/bsize
  nb = n/bsize

  These sizes can
be manipulated
to coincide with
actual cache
sizes on
individual
architectures

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

  Pro: Re-use of the array B
  Cons: Four arrays now fight for cache; more registers

needed

11 Apr 2011

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

  Pro: First loop may be scheduled more efficiently and
parallelized

  Cons: Less opportunity for out-of-order superscalar
execution; Additional loop created (minor)

11 Apr 2011

  Modern CPU's can perform anticipated
memory lookups ahead of their use for
computation
  Hides memory latency and overlaps computation
  Minimizes memory lookup times

  This is a very architecture specific item
  Very helpful for regular, in-stride memory

patterns
  GNU: -fprefetch-loop-arrays
  PGI: -Mprefetch[=option:n]
  Intel: -O3

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Operation replacement
  Replacing individual time consuming operations

with faster ones
  Floating point division

  Notoriously slow, implemented with a series of instructions
  So does that mean we cannot do any division if we want

performance?

  IEEE standard dictates that the division must be
carried out
  We can relax this and replace the division with

multiplication by a reciprocal
  Compiler level optimization, rarely helps doing this by

hand
  Much more efficient in machine language than

straight division, because it can be done with
approximates

  GNU: -funsafe-math-optimizations
REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Calling functions and subroutines requires
overhead by the CPU to perform
  The instructions need to be looked up in memory,

the arguments translated, etc...

  Inlining is the process by which the compiler
can replace a function call in the object with
the source code
  It would be like creating your application in one big

function-less format

  Advantage:
  Increase optimization opportunities
  Particularly advantegeous (necessary) when a

function is called a lot, and does very little work
(e.g. max and min functions)

  GNU: -finline-functions, Intel: -ip, -ipo
REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Elimination of redundant work
  Making use of superscalar features of CPUs

(instruction level parallelism)
  Special instructions (SSE - Streaming SIMD

Extensions)
  Multi-core CPU’s

  The key issue is memory bandwidth, and good
caching performance will be key
  This problem is worsened as more cores are added.

  Caching and memory performance vary greatly
  Some share L2 cache between all cores, some have

their own
  Varying number of pipelines to memory

  Increasing SIMD operations

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

11 Apr 2011

  Performance programming on single
processors requires
  Detailed profiling
  Understanding memory

  levels, costs, sizes
  Understand SSE and how to get it to work

  In the future this will one of the most important aspects
of processor performance.

  Understand your program
  No subsitute for spending quality time with your code.

  Do not spend a lot of time doing what I
compiler will do automatically

  Start with compiler optimizations!

  Code optimization is hard work!
  And here we did not even consider parallelization!

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

