REALLY Advanced School in High Performance and Grid Computing
ICTP, Trieste, 11-22 April 2011

Advanced Profiling and
Optimization Techniques

Antun Balaz

Scientific Computing Laboratory (SCL)
Institute of Physics Belgrade
http://lwww.scl.rs/

(\onal Grid
(g //) .
b\) /(.
Q, /.

N

&, \,
!q.la S }0 of

>
<
v
L
S
v
e
¥
L

11 Apr 2011

AEG\S

Motivation (1)

Real processors have registers, cache,
parallelism - they are complicated!

Why is this your problem?
In theory, compilers understand all of this and
can optimize your code

Generally optimizing algorithms across all

computational architectures is an impossible

task, hand optimization will always be needed.
We need to learn how...

to measure performance of codes on modern
architectures

to tune performance of the codes by hand (32/64
bit commodity processors)

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Motivation (2)

When you are charged with optimizing an app

Don't optimize the whole code
Profile the code, find the bottlenecks
They may not always be where you thought they were

Break the problem down

Try to run the shortest possible test you can to get
meaningful results

|solate serial kernels
Keep a working version of the code
Getting the wrong answer faster is not the goal.

Optimize on the target architecture

Optimizations for one architecture will not necessarily
translate

The compiler is your friend!

If you find yourself coding in machine language, you are
doing too much

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Performance

The peak performance of a chip

The number of theoretical floating point operations
per second

Example: 2.4 Ghz Opteron can theoretically do 2
floating point operations per cycle, for a peak
performance of 4.8 Gflops

Real performance
Algorithm dependent, the actually number of
floating point operations per second

Generally, most programs get about 10% or lower of
peak performance

40% of peak, and you can go on holiday

Parallel performance

The scaling of an algorithm relative to its speed on
one CPU (core)

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Performance evaluation

Monitoring System
Observe both overall system performance and
single-program execution characteristics

Look to see if the system is doing well and what
percentage of the resources your program is
using.

Pro: easy

Con: not very detailed

Profiling and Timing the code

Timing a whole programs (/usr/bin/time)

Timing portions of the program (code
modification)

Profiling

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Useful monitoring
commands on Linux

uptime - information about system
usage and user load

ps - lets you see a “ snapshot” of the
process table

top - process table dynamic display
free - memory usage
vmstat - memory usage monitor

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Swapping: your worst
nightmare

Virtual or swap memory

This memory is actually space on the hard
drive

The operating system reserves a space on
the hard drive for “ swap space”

Time to access virtual memory VERY
large

This time is attributed to the system, not
to your program, and you can observe it

e.g. as a difference in wall clock time
and CPU time

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Monitoring your code

man time

user time: CPU time dedicated to your program

sys time: time used by your program to execute
system calls

real time: total time - walltime

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Timing a portion of the

code

Most programming languages provide
a means to access the systems own
timing functions

C function: clock

clock t cO, c1;

c0 = clock();

section of the code...

c1= clock();

cputime = (c1 - c0)/(CLOCKS_PER_SEC));
Fortran subroutine: cpu_time

call cpu_time(t0)

section of the code...

call cpu_time(t1)

cputime =t1 —-1t0

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Timing is a good
programming practice!

Good application writers will take full
advantage of these to give users insight
into code performance

Therefore, when writing an application,
you should consider timing of critical
parts of the program and printing timing
info as a part of its output

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Profiling (1)

Profiling is an approach to performance
analysis in which the amount of time
spent in sections of code is measured
(using either a sampling technique or
on entry/exit of a code block) and
presented as a histogram

Allows a developer to target key time
consuming portions of codes

Profiling can be done at varied levels of
granularity

Function/subroutine, code block, loop and
11 Apr 2011 source code line

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Profiling (2)

Profiling: investigation of program
behavior using run- time information

Profiler: conceptual module that
collects/analyzes run- time data

Profile: a set of frequencies
associated with run-time events

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Hardware Performance
Counters

Most modern processors have one or more
registers dedicated to count low level

hardware information
e.g. floating point operations, L1 cache misses, etc.

This information is really useful to understand
at a very fine grain of detail what a program is
doing on the architecture

PAPI (Performance API)

The API provides function handles for setting and
accessing these counters

http://icl.cs.utk.edu/papi/

REALLY Advanced School in
igh Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Profiler implementations

Hybrid (HW-assisted)
Hardware Performance Monitors (HPMs)2.

Dedicated HW collectors that deliver data
to SW module

Fixed, low-overhead

Software — Pure software
Implementations

Portable, flexible, high-overhead

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

GCC profiling and gprof

Simple gcc compiler flags can be used to get
profiling information
Great place to start

GNU:

-p Generate extra code to write profile information
suitable for analysis program prof

-pg Generate extra code to write profile information
suitable for analysis by program gprof.

Procedure
gJgCcC -pg prog.c -0 prog

/prog
gprof prog gmon.out

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Example for gprof

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Many advanced tools
available

TAU is a portable profiling and tracing
toolkit for performance analysis of
parallel programs

http://www.cs.uoregon.edu/research/tau/
home.php

Intel VTune
http://en.wikipedia.org/wiki/VTune

TotalView
http://en.wikipedia.org/wiki/TotalView

Profiling and optimization tuning tools
intermingle

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Optimization flow-chart

Profiling of the code
|dentification of bottlenecks

Optimizing of one loop/function at a
time
Starting with the most time consuming
fnctions (that is why we profile)

Then the second and the third one

Parallelizing of the program

Then we can work on improving the
parallel performance (communication,
load balancing, etc..)

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Optimization techniques

Improve memory performance (taking
advantage of locality)

Better memory access patterns

Optimal usage of cache lines

Re-use of cached data

Improve CPU performance
Reduce flop count
Better instruction scheduling
Use optimal instruction set

Use of highly optimized numerical
libraries

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Pipelining

Pipelining allows for a smooth progression of instructions
and data to flow through the processor

Any optimization that facilitate pipelining will speed the
serial performance of your code

As chips support more SSE like character, filling the
pipeline is more difficult.

Stalling the pipeline slows codes down
Out of cache reads and writes; Conditional statements

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Memory locality (1)

Effective use of the memory hierarchy can
facilitate good pipelining
Temporal locality:

Recently referenced items (instr or data) are likely
to be referenced again in the near future

iterative loops, subroutines, local variables
working set concept

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Memory locality (2)
Spatial locality:

programs access data which is near to
each other

operations on tables/arrays
cache line size is determined by spatial
locality

Sequential locality:

processor executes instructions Iin
program order

branches/in-sequence ratio is typically 1 to
3)

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Caching

CPU cache is generally set up as a series of
lines that can pull in a specified amount of
data a given time.

Accessing cache is infinitely faster than the
main memory

Get as much data in at a time
Use that data to its fullest

Main Cache
Memory Memory
Index Data Index Tag Data

0 xyz 0 2 abc

1 pdqg >< 1 0 xyz

2 abc

3 rgf

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Optimization Techniques
for Memory

Strides - contiguous blocks of memory

Accessing memory in stride greatly
enhances the performance

Array indexing

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Loop interchange (1)

Basic idea: change the order of data
iIndependent nested loops.

Advantages:

Better memory access patterns (leading to
improved cache and memory usage)

Elimination of data dependencies (to increase
opportunity for CPU optimization and
parallelization

Disadvantage:
May make a short loop innermost

Usually, compilers cannot do this

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Loop interchange (2)

Fortran:

b NN JEm J8 amE ap

AW 2w 2 2w rv— hadbhadbadbidbii 4 d

C: precisely the opposite (raw-wise)

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Loop interchange (3)

L, K 8.77
L, K,] 7.61
i, i, k 2.00
o K 0.57
K, I,] 0.90
K, J, | 0.44

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Loop unrolling (1)

Computation is cheap, while branching
IS very expensive

Loops, conditionals, etc. cause
branching instructions to be performed:

for(i = 0; 1 < N; i++) {
do something useful (i) ;

)
Each time for statement is hit, a

branching instruction is called
Therefore, (partially or fully) unrolling a
loop may be (highly) beneficial

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Loop unrolling (2)

do 1=1,N,4

do 1=},N : | a(i)=b(i)+x*c(i)
endgél>—b<l)+X*C(i) a(1+1)=b (i+1)+x*c(i+1)

a(i+2)=b (i+2)+x*c(i+2)
a(i+3)=b (i+3)+x*c(i+3)
enddo

Compilers can do unrolling, but may make
them where it is not sensible

This is not helpful when the work inside the
loop is not mostly number crunching

GNU: -funrollloops, -funrollallloops

PGl: -Munroll, -Munroll=n:M

Intel: -unroll, -unroliM

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Blocking for cache (tiling)

Blocking for cache is

An optimization that applies for datasets
that do not fit entirely into cache

A way to increase spatial locality of
reference i.e. exploit full cache lines

A way to increase temporal locality of
reference i.e. improves data reuse

Example.: do i=1,n
transposing do j=1,n
f a(i,j)=b(3,1)
a matrix e
end do

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Block algorithm for
transposing a matrix

Block data o b= 1 mb
Size = bsize ::£§b==(il,:-::t)> * bsiz

joff = (jb-1) * bsiz

mb = m/bsize do'3 = 1, buix
— . do 1 = 1, bsi
nb = n/bsize ob:f(i,j) - x(itioff, j+30££)
. dd
These sizes can ,§2§°° |
be manipulated = T
. . . b - buf(,)
to coincide with e L
actual cache buf (j,1) = bswp
_ enddo
sizes on —==
_ o do i=1,bsiz
individual do j=1,bsiz .
] y(3+joff, i+ioff) = buf(j,1)
architectures enddo
enddo
enddo

enddo

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Loop fusion

Pro: Re-use of the array B

Cons: Four arrays now fight for cache; more registers
needed

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Loop fission

Pro: First loop may be scheduled more efficiently and
parallelized

Cons: Less opportunity for out-of-order superscalar
execution; Additional loop created (minor)

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Prefetching

Modern CPU's can perform anticipated
memory lookups ahead of their use for
computation
Hides memory latency and overlaps computation
Minimizes memory lookup times

This is a very architecture specific item

Very helpful for regular, in-stride memory
patterns

GNU: -fprefetch-loop-arrays
PGl -Mprefetch[=option:n]
Intel: -O3

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Optimizing Floating Point

Operation replacement

Replacing individual time consuming operations
with faster ones

Floating point division
Notoriously slow, implemented with a series of instructions
So does that mean we cannot do any division if we want
performance?

IEEE standard dictates that the division must be

carried out

We can relax this and replace the division with
multiplication by a reciprocal

Compiler level optimization, rarely helps doing this by
hand

Much more efficient in machine language than
straight division, because it can be done with
approximates

GNU: -funsafe-math-optimizations

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Function inlining

Calling functions and subroutines requires
overhead by the CPU to perform

The instructions need to be looked up in memory,
the arguments translated, etc...

Inlining is the process by which the compiler
can replace a function call in the object with
the source code
It would be like creating your application in one big
function-less format
Advantage:
Increase optimization opportunities
Particularly advantegeous (necessary) when a
function is called a lot, and does very little work
(e.g. max and min functions)
11 Apr 2011 GNU: -finline-functions, Intel: -ip, -ipo

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

There is more...

Elimination of redundant work

Making use of superscalar features of CPUs
(instruction level parallelism)

Special instructions (SSE - Streaming SIMD
Extensions)

Multi-core CPU'’s

The key issue is memory bandwidth, and good
caching performance will be key

This problem is worsened as more cores are added.
Caching and memory performance vary greatly

Some share L2 cache between all cores, some have
their own

Varying number of pipelines to memory

Increasing SIMD operations

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

Conclusions

Performance programming on single
processors requires
Detailed profiling

Understanding memory
levels, costs, sizes

Understand SSE and how to get it to work

In the future this will one of the most important aspects
of processor performance.

Understand your program
No subsitute for spending quality time with your code.
Do not spend a lot of time doing what |
compiler will do automatically
Start with compiler optimizations!
Code optimization is hard work!
And here we did not even consider parallelization!

REALLY Advanced School in High Performance and Grid Computing, ICTP, Trieste, 11-22 April 2011

